

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

RE-IRRADIATION: FROM IMRT TO HADRON THERAPY Elisa D'Angelo UOC Radioterapia Oncologica Azienda USL di Bologna, Ospedale Bellaria

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Reirradiation... a recent history?

- 1926, Lee and Tannenbaum reported their experience with more than 300 patients managed for recurrent inoperable breast cancer at Memorial Hospital, New York
- From 1930, Soiland and Costolow, for cervical cancer, at the Los Angeles Tumor Institute, California: 11% of 1574 pts.
- Between 1936 and 1941, 461 patients were reirradiated for cervical cancer, by Murphy and Schmitz from Roswell Park Memorial Institute, Buffalo, NY.
- Garland and Sisson reported the results of irradiation for lip, tongue, and ear cancer between 1932 and 1948 (San Francisco)
- Zuppinger reported the University of Zurich data with protracted fractionated radiation therapy between 1931 and 1936 in 107 patients with head and neck tumors.22 Of these, 13 (12%) were reirradiated.
- Between 1940 and 1950, selected patients with nasopharyngeal malignancy were reirradiated at the University of California School of Medicine, San Francisco.
- Chu and Hilaris from Memorial Hospital, New York, about brain metastases, which covers 1954 to 1958.

Advances in Radiation Oncology (2017) 2, 176-182

Critical Review

Preserving the legacy of reirradiation: A narrative review of historical publications Carsten Nieder MD^{a,b,*}, Johannes A. Langendijk MD^c, Matthias Guckenberger MD^d, Anca L. Grosu MD^{e,f}

1920-1970

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Reirradiation... a recent history?

- In a textbook from 1965, Kramer provided a summary of the knowledge about reirradiation, including persistent, recurrent, and new primary tumor scenarios. Factors to consider during decision making included the **natural history of the tumor**, its **extent**, the **condition of the normal tissues**, the **details of the previous treatment**, and the **objective** of the proposed reirradiation.
- He recommended that "an **attempt must be made to determine whether the initial course of therapy** has failed because of inadequate doses, geographical miss, or radioresistance of the tumor.
- Previously irradiated tissues are compromised a priori to some extent, whether this is clinically obvious or not."

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Re-irradiation history

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Modern scenario

AIRO2023

Definition

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

.

Nicolaus Andratschke^{*}, Jonas Willmann^{*}, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Hayer, Johannes A Langendijk, Coit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder

_

Andratschke 2022

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Re-irradiation techniques

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschke", Janas Willmann", Anr. L. Appelt, Najlaa Alyanani, Panagiatis Balempas, Brighta G Baumert, Corn Hurkmans, Martan Hyay, Johannes A. Langmeljik, Crit Kaldar-Proson, Vrettze van der Linden, Ion Meattiel, Maaimilian Nijazi, Nick Roynaert, Dir Re Royscher, Performe Tanadhi-Lang. Peter Hoskin, Philip Portnamer, Caster Nieder

- EBRT in 265 (54%) of the studies:
 - 3D CRT(n=75),
 - IMRT or VMAT (n=64)
 - SBRT to cranial (n=46) or extracranial targets (n=80)
- Particle in 39 (8%)
- Brachytherapy 46 (9%)

Contents lists available at ScienceDirect

Physica Medica

journal homepage: www.elsevier.com/locate/ejmp

Management of reirradiations: A clinical and technical overview based on a French survey

Myriam Ayadi ^a, ^{*}, Pauline Dupuis ^a, Thomas Baudier ^b, Laeticia Padovani ^c, David Sarrut ^b, Marie-Pierre Sunyach ^a

^a Radiation Therapy Dapartment, Léon Bérard Centre, Lyon, France ^b Unit Joon, INSA-Lyon, Université Lyon J., CNRS, Intern, Cartter Léon Bérard, CREATIS UMR 5220, U1206, F-69373 Lyon, France ^c Radiotherapy Department, Assistance Publique des Hapitaux de Marseille, Manseille, France

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Re-irradiation number

03380	Contents lists available at ScienceDirect	
	Radiotherapy and Oncology	
LSEVIER	journal homepage: www.thegreenjournal.com	

Original Article

Re-irradiation in clinical practice: Results of an international patterns of care survey within the framework of the ESTRO-EORTC E^2 -RADIatE platform

Jonas Willmann⁺, L. Appelt^b, Panagiotis Balermpas^a, G. Baumert^c, Dirk de Ruysscher^d, Morten Hoyer^{*}, Coen Hurkmans⁴, Orit Kaidar-Person^{*}, Icro Meattini^{1,1}, Maximilian Niyazi^{1,k}, Philip Poortmans^{1,m}, Nick Reynaert^{*}, Stephanie Tandini-Lang^{*}, Yvette van der Linden⁶, Carsten Nieder^{10,4}, Nicolaus Andratschke^{*}

brain (77%, n = 287) pelvis (65%, n = 241) head and neck region (63%, n = 235) thorax (60%, n = 221) breast/chest wall (51%, n = 189) abdomen (39%, n = 145)

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Challenges in reirradiation

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Challenges in reirradiation

AIRO2023

Author	No pts	RT Type	Median Dose (Gy/fr)	Concurrent Systemic Therapy (N)	Interval between RT courses (months)	Median PFS (months)	Median OS (months)	RN (%)	
Combs et al., 2005	59	FSRT	36/18	TMZ or PVC, (36)	10	5	8, 23% at 12 months	0	
Grosu et al., 2005	34	HSRT	30/6	TMZ (29)	16	NR	8 (both), 11 (RT+TMZ), 6 (RT alone)	20.5	
Kong et al., 2008	65	SRS	16/1	None	4.3	4.6	23	37.5	
Cuneo et al., 2009	49	SRS	15/1	BEV	20	5.2 (+ BEV), 2.1 (-BEV)	11.9 (+ BEV), 3(-BEV)	10	
Gutin et al., 2009	20	HSRT	30/5	BEV	15	7.3 (4.4-8.9)	12.5; 54% at 12 months	0	
Fogh et al., 2010	105	HSRT	35/10	TMZ (26), other (22)	8	NR	11	0.7	
Minniti et al., 2011	36	HSRT	37.5/15	TMZ	14	5; 42% at 6 months	9.7; 33% at 12 months	22.2	
Minniti et al., 2013	38	HSRT	30/5	TMZ	15.5	6 24% at 12 months	12.4; 53% at 12 months		
Martinez-Carrillo et al., 2014	46	SRS	18/1	NR	10	NR	7.5	10	
Wick et al., 2014	91	FSRT	36/18	APG101 (58)	21	2.5 (RT), 4.5 (RT+APG101)	11.5 (both groups)	1.3	
Kim H.R. et al., 2015	57	SRS	15/1	TMZ	8.8	3.6 (2.3 + TMZ)	9.2 (15.5 + TMZ)	NR	
Minniti et al., 2015	42	HSRT	25/5	FTM (23) BEV (19)	14	50% (BEV), 18% (BEV+FTM) at 6 months	30% (BEV), 8.3% (BEV+FTM) at 12 months	16.6	
Pinzi et al., 2015	88	SRS	16-22/1	NR (22)	15	NR	11.5 48% at 12 months	6	
Imber et al., 2017	174	SRS	16/1	TMZ (20), CCNU (13), BCNU (11)	8.7	NR	10.6	13	
Kim et al., 2017	57	SRS	15/1	TMZ (28)	NR	3.6, 6 (+ TMZ)	9.2, 15.5 (+TMZ)	24.4	
Sharma et al., 2017	53	SRS	18/1	None	16	4.4	11	4	
Palmer et al., 2018	87	SRT	35/10	none	10.8	NR	13.9	NR	
Fleischmann et al., 2019	124	FSRT	36/18	BEV (95)	18	5	9	6.9	
Scartoni et al., 2020	33	PBRT	36/18	TMZ (7)	21.3	5.9	8.7	9.09	
Kaul et al., 2020	133	HSRT	41.8- 49.4/12- 15	TMZ (58)	14	NR	6	5.6	
Saeed et al., 2020	45	PBRT	42.6/20	TMZ (16), BEV (4), TMZ+BEV (10)	20.2	13.9	14.2	8.8	
Attia et al., 2022	57	FSRT	36/18	none	16	8	11	3.5	
Tsien et al., 2023	170	HSRT	35/10	BEV+RT, BEV alone	NR	54% vs. 29% at 6 months	10.1 BEV + RT, 9.7 BEV alone	0	

Legend: BEV, bevacizumab; BCNU, Carmustina; CCNU, Lomustine; FSRT, fractionated stereotactic radiotherapy; FTM, fotemustine; HSRT, hypofractionated stereotactic radiotherapy; NR, not reported; OS, overall survival; PBRT, proton beam radiotherapy; PFS, progression-free survival; PVC, Procarbazine, lomustine, vincristine; RN, radionecrosis; SRS, stereotactic radiosurgery; SRT, stereotactic radiotherapy; TMZ transcalence in the start of the st

Brain

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

90% glioblastoma local recurrence

Median survival times from 7 to 13 months and 1-year OS rates of 30–55% have been observed following either SRS or fractionated SRT, with 1-year incidence of neurological toxicities ranging from 5 to 20%

De Pietro, 2023

AIRO2023

Brain

First author, year [reference]	Country	Primary tumour	Site	Age	No. patients/ reirradiation courses	Time to reirradiation (median, range)	Tumour volume	Type of study	Total dose first radiotherapy course (Gy: Median, range)	Total dose second radiotherapy course (GyRBE: Median, range)	No. fractions	Dose per fraction (GyRBE)	Local control/ overall survival rates	Acute and late toxicities
Brain Saeed, 2022 [13]	USA	GBM	Brain	Adult	45	20 months (3-77)	NS	Prospective	60 (25-60)	46.2 (25–60)	NS	2.2 (1.2 -4)	Median PFS 13.9 months; median OS 14.2 months	AT: 3 grade 3; LT: 4 grade 3
Scartoni, 2020 [14]	Italy	GBM	Brain	Adult	33	21.3 months (5-96)	Median CTV 75 cm ³	Prospective	60	36	18	NS	Median PFS 5.9 months; median OS	AT: 3 grade 2

no comparative studies have demonstrated the clinical superiority of a technique over another in patients with brain tumors in terms of local control and treatment-related toxicity

AIRO2023

Brain

Median Dose 46.2 Gy (25-60)

Table 3 Clinical outcomes of proton beam therapy reirradiation patients

Parameter	All pa $(N =$	ttients 45)		
	N	%		
Survival, mo (95% confidence interval)				
Median progression-free survival	13.9 (8.2-20)			
Median overall survival	14.2 (9.6-16.9)		
Toxicity, n				
Grade 3, acute	1	2.2%		
Grade 3, late	4	8.8%		
Grade 4+, any	0	09		

Median Dose 42.3 Gy (30-60)

26 patients with recurrent malignant brain tumors treated with conventional radiotherapy (RT, n = 8), stereotactic radiotherapy (SRT, n = 10), and proton beam therapy (PBT, n = 8)

median survival local control

18.3 months 9.3 months

...glioblastoma median survival local control

13.1 months 11.0 months

Saaed 2020, Mizumoto 2013

AIRO2023

HNSCC

Patients profit from IMPT & IMIT compared to VMAT

• the exact magnitude of the clinical benefit is uncertain as a decrease in dose does not always translate into a clinically relevant decrease of toxicity risk

AIRO2023

HNSCC 24-50% HNSCC local recurrence

- Series 220 pts, 192Ir seeds, on neck and base of the tongue-
 - 2-, 5- and 10-year LC rates of 69%, 51% and 41%
 - one-third of the cohort (60 pts) developed severe late complications
- cohort of 69 patients receiving low-dose BT with 125I and 103Pd after surgery
 - LC rates in 1-, 3- and 5-year follow-ups constituted 55%, 38%, 28%
 - late severe complications high
- 96 patients receiving reRT for rHNC by CyberKnife[®]
 - High total doses (>40 Gy) proved beneficial as measured by 1-|2-|3-year LC rates: 69.4%|57.8%|51.1%
 - Target volumes < 25 cm3
 - low incidence of radiation complications has been attributed to skip-a-day fractionation
- Vargo et al. published a report (2015) on 48 patients after stereotactic body reRT in combination with cetuximab target therapy
 - smaller tumors (18 pts, 38%) received single focal doses of 8 Gy in 5 fractions to TD of 40 Gy; for tumors ≥ 25 cm3 (30 pts), single doses were increased to 8.8 Gy and delivered also in 5 fractions to TD of 44 Gy
 - Acute radiation reactions grade 3 developed in 3 pts (6%
- The meta-analysis by Lee et al. (2020), encompassing a total of 575 cases from 10 multicenter studies
 - Total dose amounted to 24–44 Gy (median 30 Gy) delivered in 3–6 fractions (median 5
 - The 2-year OS and LC rates constituted, respectively, 30.0% (24.5–36.1%) and 47.3% (3.1–62.1%).

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Study	Period	n pts	Follow-Up Time	Histology	Toxicity	LC	OS	DSS/PFS	RT Type
Riaz et al. [64]	1996-2011	348	32.6 m	various	G ≥ 31 31.3%	2y 47%	2y 25%	N/d	photons
Langendijk et al. [54]	1997-2003	34	32 m	SCC	G3-4166%	2y 27%	2y 38%; 3y 22%	N/d	photons
Duprez et al. [69]	1997-2011	60	18.5 m	SCC 48; ACC 9; Others 3	Acute: G3135%; G413% Late: G3111.7%; G4126.7%; G516.7%	1y 64%; 2y 48%; 5y 32%	1y 44%; 2y 32%; 5y 22%	N/d	photons
Takiar et al. [63]	1999-2014	227	SCC 22.5 m; others 74.7 m	SCC 173; Other 33	G3135.4%	2y 59%	2y 51%	N/d	photons
Langer et al. [58]	2000-2003	99	23.6 m	SCC	Acute: G3149% G4123% G515% Late: G3116.9% G4116.9% G513.6%	N/d	1y 50.2%; 2y 25.9%	N/d	photons CT
Loimu et al. [14]	2000-2007	237	51 m	SCC	Late: G3124%	2y 84%	2y 82%	2y 89%	photons
Platteaux et al. [55]	2000-2009	51	9.5 m	SCC	Acute: G3129.4% Late: G3135.3%	2y 32%	2y 30%	2y 28%	photons
Kharofa et al. [52]	2001-2009	38	16 m	SCC	N/d	N/d	1y 54%; 3y 31%; 5y 20%	N/d	photone CT
Qiu et al. [65]	2003-2009	70	25 m	SCC	N/d	2y 65.8%	2y 67.4%	N/d	photons
Kong et al. [66]	2009-2014	77	25.7 m	SCC	Late: G ≥ 31 64.9%	N/d	1y 92%; 2y 68%; 3y 51.5%	1y 78.7%; 2y 45.5%; 3y 32.3%	photons
Ling et al. [43]	2002-2013	291	9.8 m	255 SCC; 35 ACC; 31 others	Acute: $G \ge 31$ 11.3% Late: $G \ge$ 3118.9%	N/d	1y 41.4%; 3y 16.6%; 5y 10.8%	N/d	photons SBRT
Rwigema et al. [42]	2003-2008	96	14 m	SCC	Acute: G315.2% Late: G313.1%	TD 40-50Gy: 1y 69.4%; 2y 57.8%; 3y 41.1%. TD 15-36 Gy: 1y 51.9%; 2y 31.7%; 3y 15.9%	all groups: 1y 58.9%; 2y 28.4%	N/d	photons SBRT
Cengiz et al. [45]	2007-2009	46	N/d	30 SCC; 16 others	G314.4%	1y-83.8%	1y-47%	N/d	photons SBRT
Vargo et al. [48]	2007-2013	IMRT 217; SBRT 197	IMRT 8.4 m; SBRT 7.1 m	IMRT SCC 205; SBRT SCC 194; others: 12 IMRT; 2 CDPT	IMRT G3116.6%; SBRT G3111.7%;	N/d	IMRT 2y 35.4%; SBRT 2y 16.3%	N/d	photons IMRT vs SBRT

HNSCC

Study	Period	n pts	Follow-Up Time	Histology	Toxicity	LC	OS	DSS/PFS	RT Type
Saroja et al. [111]	1976-1985	46	9.3 m	various, non-SCC	G3125%	2 y 50%	2y 78%	2y 44%	FNT
McDonald et al. [97]	2004-2014	61	29 m	SCC 37; Other 24	G3113.1%; G413.3%; G514.9%	2y 19.7%	2y 32.7%	N/d	РТ
Beddok et al. [100]	2012-2019	55	41.3 m	SCC	N/d	2y 18.3%	2y 42.5%	N/d	PT + photon
Romesser et al. [96]	2011-2014	92	13.3 m	52 SCC; 9 ACC; 31 others	Acute: $G \ge 31$ 31.4% Late: $G \ge 3115.8\%$	1y 25.1%	1y 65.2%	1y 84%	РТ
Phan et al. [95]	2011-2015	60	13.6 m	SCC	G3 30% Late: G3 16.7%	1y 68.4%	1y 83.8%	1y 60.1%	PT
Dionosi et al. [98] et al.	2015-2018	17	10 m	SCC	G3123.5%	1.5y 66.6%	1.5y 54.4%	N/d	PT
Lee et al. [101]	2013-2020	242	N/d	SCC	Acute: G3130.2%; G4162.4% Late: G3132.6%; G411.6%; G512% Acute:	Fx group 1y 71.8%; quad shot group 1y 61.6	Fx group 1y 66.6%; quad shot group 1y 28.5%	N/d	PT
Kankaanranta et al. [114]	2003-2008	30	N/d	29 SCC; 1 sarcoma	G3 86% Late: G3 20%	1y 95% 2y 27%	2y 30%	N/d	NCT
Wang et al. [116]	2010-2013	17	19.7 m	11 SCC; 6 others	G319%	2y 28%	2y 47%	N/d	NCT
Hirose et al. [118]	2016-2018	21	24.2 m	8 SCC; 13 others	Acute: G3-4 10%	N/d	SCC 2y 58%; non-SCC 2y 100%	N/d	NCT
Hayashi et al. [120]	2007-2016	48	27 m	various, non-SCC	G3125%; G4125%; G512%	2y 40.5%	2y 59.6%	2y 29.4%	CIT
Held et al. [123]	2010-2017	229	28.5 m	124 ACC; 60 SCC; 45 others	Acute: $G \ge 3 2.3\%$ Late: $G \ge 3 8\%$	1y 60%; 1.5y 44.7%	26 m	N/d	CIT
Vischioni et al. [121]	2013-2020	15	22 m	7 ACC; 2 SCC; 6 others	Acute: G3-G41 6.7%	1y 44%; 2y 35.2%	1y 92.9%; 2y 78.6%; 3y 38.2%	N/d	CIT
Gao et al. [122]	2015-2017	141	14.7 m	106 SCC; 10 ACC; 25 others	G510.7% Late: $G \ge 31$	1y 84.9%	1y 95.9%	1y 95.9%	CIT

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

HNSCC

- Relative Biological Effectiveness of Protons versus Photons in HNSCC
- LET-Based Optimization of Proton Treatment Plans for HNSCC
- Mechanisms Underlying the Enhanced Biological Effects of Proton versus Photon Radiation in Head and Neck Cancer
 - Proton- versus Photon-Induced Changes in Gene and Protein Expression in HNSCC
 - Proton- versus Photon-Induced DNA Damage and Repair in HNSCC
 - Mechanisms Underlying Proton- versus Photon-Induced HNSCC Cell Death
 - Effects of Protons versus Photons on Immune-Related Responses in
 HNSCC

The Biological Basis for Enhanced Effects of Proton Radiation Therapy Relative to Photon Radiation Therapy for Head and Neck Squamous Cell Carcinoma

Li Wang, MD, PhD¹; Piero Fossati, MD²; Harald Paganetti, PhD³; Li Ma, PhD¹; Maura Gillison, MD, PhD⁴; Jeffrey N. Myers, MD, PhD⁵; Eugen Hug, MD²; Steven J. Frank, MD⁶

AIRO2023

Rectal cancer

4-8% recurrence

Author	N° Patients	Country	Year	Study Design	Study Period	Patient Population	Re-RT Technique	Age, (Range) Years	Previous RT Dose (Range), Gy	Interval between RT (Range), mo	Re-RT Total Dose, Gy	Re-RT Fx. Dose, Gy	CTx. Rate (%) (Agent)	Surgery
	35	_					CIRT	62 (37–76)	50 (20–66)	NR	70.4 Gy (RBE) 101.38 Gy in BED10	4.4 Gy [RBE]	Not admin- istered	0%
Chung SY	31	- Japan- Korea	2022	R	2005–2019	LRRC	29% 3D RT, 71% IMRT or Cyberknife	60 (35–87)	50.4 (45-60)	NR	50 Gy (range 25–62.5 Gy) 60 Gy in BED10		68% *	23% After, 13% Before re-RT
Yamada S	77	Japan	2022	R	2005-2017	LLRC	CIRT	60 (37–76)	50 (20–74)	50 (13–157)	70.4 Gy (RBE)	4.4 Gy [RBE]	Not admin- istered	0%
Barcellini A	14	Italy	2020	R		LRRC	CIRT	58.5 (34–78)	45 (45–76)	65 (14–139)	60 Gy RBE (35–76.8)	3 Gy RBE (3-4.8)	NR	0%
Habermehl D	19	Germany	2014	R	2010-2013	Unresectable LRRC	CIRT	62 (14–76)	50.4 (50.4–60.4)	47.4 (17–110)	36 to 51 Gy (RBE)	3 Gy (RBE).	NR	NR
Cai G.	22	China	2014	Phase II	2007-2012	Unresectable LRRC	IMRT	53 (40–68)	48.6 (36–62)	30 (18–93)	39	1.3 BID	81.8% (5-FU based)	0%
Dagoglu N.	18	Turkey	2015	R	2006-2012	Pelvic RRC or CC	Cyberknife	68 (32–93)	50.4 (25–100.4)	22 (15–336)	25 (24-40)	5	Not admin- istered	NR
DeFoe S.G.	14	USA	2011	R	2003-2008	Presacral RRC	Cyberknife	65.5 (42–77)	50.4 (20-81)	NR	16 (12–36)	12	NR	NR

Mantello G, 2023

Rectal cancer

in vivo 34: 1547-1553 (2020) doi:10.21873/invivo.11944

> Re-irradiation With Carbon Ion Radiotherapy for Pelvic Rectal Cancer Recurrences in Patients Previously Irradiated to the Pelvis

AMELIA BARCELLIN¹¹, VIVIANA VITOLO¹¹, LORENZO COBIANCHI¹², ANDREA PELOSO^{1,5}, ALESSANDRO VANOLI⁶, ALFREDO MIRANDOLA¹, ANGELICA FACOETI¹, MARIA ROSARIA FIORE¹, ALBERTO IANALF¹, BABBARA VISCHIONI¹, FRANCESCO CUCCIA¹, SABA RONCHI¹, MARIA BONDRA¹, GIULIA RIVA¹, RACHELE PETRUCCI¹, EMMA D'IPPOLITO¹, FRANCESCO ADAL MAS⁴⁵, LORENZO PREDA¹² and FRANCESCO AUXO¹

- median total CIRT dose was 60 Gy RBE (range=35-76.8)
- median follow-up was 18 months
- 1 year LC 78%; 2 years 52%
- acute toxicities were grade 2 (G2) (7%) and G1 (14%) neuropathic pain. The major late toxicities consisted of G2 peripheral neuropathy (14%)

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Rectal cancer

Ann Surg Oncol (2022) 29:99-106 https://doi.org/10.1245/s10434-021-10876-4 Annals of SURGICAL ONCOLOGY

ORIGINAL ARTICLE – COLORECTAL CANCER

Carbon Ion Radiotherapy for Locally Recurrent Rectal Cancer of Patients with Prior Pelvic Irradiation

Shigeru Yamada, MD, PhD¹, Hirotoshi Takiyama, MD, PhD¹, Yuka Isozaki, MD, PhD¹, Makoto Shinoto, MD, PhD¹, Daniel K. Ebner, MD, MPH¹, Masashi Koto, MD, PhD¹, Hiroshi Tsuji, MD, PhD¹, Hideaki Miyauchi, MD, PhD², Mitsugu Sekimoto, MD, PhD³, Hideki Ueno, MD, PhD⁴, Michi Itabashi, MD, PhD⁵, Mastaka Ikeda, MD, PhD⁶, Hisahiro Matsubara, MD, PhD², and for the Working Group on Locally Recurrent Rectal Cancer

- 77 pts.
- Dose 70.4 Gy (RBE) (4.4 Gy [RBE] per fraction; 16 fr.
- LC 90% at 3 years and 87% t 5-years

	Acute						Late					
	G0	G1	G2	G3	G4	Total	G 0	G1	G2	G3	G4	Total
Skin	23	51	3	0	0	77	25	48	3	1	0	77
GI	52	9	6	0	0	77	66	1	1	9	0	77
GU	70	2	5	0	0	77	73	0	4	0	0	77
Infection	64	5	3	5	0	77	60	1	3	13	0	77
Pain	36	23	16	2	0	77	35	24	16	2	0	77
Neuropathy	39	28	9	1	0	77	33	23	17	4	0	77

10% G3 acute tox 21% G3 late tox

AIRO2023

Rectal cancer

Author	Re-RT Tech- nique	Follow up (Range), Months	Progression-Free Survival (PFS) Overall Survival (OS)							Local Control (LC)							
			Median (months)	1- year PFS	2- year PFS	3- year PFS	5- year PFS	Median (months)	1- year OS	2- year OS	3- year OS	5- year OS	Median (months)	1- year LC	2- year LC	3- year LC	5- year LC
	CIRT	45.7 (7–148.4)	NR	NR	NR	NR	NR	Not achieved	97%	93%	86.4%	62%	NR	94%	NR	87%	70%
Chung S.Y.	3D— IMRT or Cy- berknife	22.8 (7.2–148.4)	NR	NR	NR	NR	NR	36.9	88.9%	59%	54.5%	30%	NR	89%	NR	44%	55%
Yamada S.	CIRT	45 (7–159)	14	58%	36%	33%	25%	47	90%	73%	61%	38%	NR	85%	75%	69%	62%
Barcellini A.	CIRT	18	m-PFS 14.4 (2–40)	64.3%	43%	NR	NR	NR	100%	76.2%	76.2%	NR	14.5 (2.4–49.5)	78%	52%	NR	NR
Habermehl D.	CIRT	8	NR	NR	NR	NR	NR	9.1	NR	NR	NR	NR	20.6 *	85%	NR	NR	NR
Cai G.	IMRT	17 (2–59)	NR	67%	10.7%	NR	NR	19	85.9%	27.2%	NR	NR	14	NR	NR	NR	NR
Dagoglu N.	IMRT	38 (6–36)	38	80.2%	68.7%	61.1%	NR	40	76.8%	65.9%	59.3%	NR	NR	100%	93.7%	85.9%	NR
DeFoe S.G.	cyberknife	16.5 (6–69)	NR	NR	NR	NR	NR	NR	90%	78.8%	NR	60%	NR	90.9%	68.2%	30%	NR

Mantello G, 2023

AIRO2023

Rectal cancer

	••••	17
Study author	Type of study	Study details
Combs et al. (Heidelberg Germany) [18]	Prospective phase I/II study	Locally recurrent rectal cancer with inoperable lesion with prior photon irradiation of 20–60 Gy Time between initial radiotherapy and re-irradiation of at least 12 months Patients will be treated within seven increasing dose regimens starting at 12 × 3
HIMAT1351 (Japan) [19] Japan [20]	Prospective phase II study Prospective phase II study	GyE up to 18×3 GyE CIRT for patients with local recurrence after primarily resected rectal cancer CIRT for pelvic recurrent rectal cancer in patients with prior pelvic CIRT

No comparative studies

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

PARTICLE THERAPY:

Re-irradiation patients... and QoL

Reirradiation is performed by all centers in a proportion ranging from < 5% to 20% of cases.

Fig. 2. Density of particle therapy facilities over million inhabitants in the European Union (august 2022) considering (left) active facilities and (2a) total facilities (active, under construction, in planning) (2b). created with https://app.datawrapper.de/.

Mazzola GC. et al., 2023

Associazione Italiana Radioterapia e Oncologia clinica

AIRO2023

PROTON THERAPY: Re-irradiation patients... and costs

Brodin et al. Radiat Oncol (2021) 16:19 https://doi.org/10.1186/s13014-021-01745-1 Radiation Oncology

Open Access

RESEARCH

Individualized quality of life benefit and cost-effectiveness estimates of proton therapy for patients with oropharyngeal cancer

N. Patrik Brodin^{1,2*}, Rafi Kabarriti^{1,2}, Clyde B. Schechter⁴, Mark Pankuch³, Vinai Gondi³, Shalom Kalnicki^{2,6}, Madhur K. Garg^{1,2,56} and Wolfgang A. Tomé^{1,2,7*}

Normal tissue complication	Management/patient procedure	Estimated cost	Reference		
Oral mucositis (grade ≥ 3) or Esophagitis (grade ≥ 3)	Fentanyl 25 µg/h patch (for 6 weeks)	\$168.8	NADAC database		
	Percocet 325 mg tablet (for 6 weeks)	\$1514.1	NADAC database		
	Mucositis cocktail (for 6 weeks)	\$37.0	NADAC database		
	Weekly IV hydration (for 4 weeks)	\$154.2	2019 Medicare Coding and Payment Report		
	PEG tube placement in 30% of cases	\$5686*	Callahan et al. [18]		
	Emergency room visit in 15% of cases for oral mucositis and 10% of cases for esophagitis	\$2096	2018 Health Care Cost and Utilization Report [†]		
	In patient hospitalization in 10% of cases	\$19,672	2018 Health Care Cost and Utilization Report		
	Loss of 1 month of work	\$2718	US Census Bureau Median per Capita Income 2014–2018 [‡]		
Dysphagia (grade≥2)	Chronic PEG tube in 10% of cases	\$18,836/year*	Callahan et al. [18]		
	Stricture dilation in 16% of patients [14, 15]	\$1700 (based on average Medicare charges ranging from \$1200 to	www.howmuchisit.org/esophageal -dilation-cost/ (updated Aug 2018		

AIRO2023

WHEN?

Camera dei deputati Servizio Studi XVIII Legislatura

I nuovi Livelli essenziali di assistenza (LEA)

29 settembre 2022

Dopo essere stato sottoposto al parere delle Commissioni parlamentari competenti, è stato approvato il D.P.C.M 12 gennaio 2017 Definizione e aggiornamento del livelli essenziali di assistenza, di cui all'articolo 1, comma 7. del decreto legislativo 30 dicembre 1992, n. 502, pubblicato sulla G.U. n. 65 del 18 marzo 2017. I precedenti LEA erano stati definiti con D.P.C.M. del 29 novembre 2001.

REIRRADIAZIONE

Group 1

Based on the medical necessity requirements and published clinical data that meets the selection criteria above, disease sites that frequently support the use of PBT include the following:

GENERAL

Benign or malignant tumors or hematologic malignancies in children aged 21 years and younger treated with curative intent and occasionally palilative intent treatment of childhood tumors when at least one of the three criteria noted above under 'indications for coverage' apply

Benign or malignant tumors or hematologic malignancies in the adolescent/young adult (AYA) population aged 22 years to 39 years treated with curative intent when at least one of the three criteria noted above under "indications for coverage" apply

Patients with genetic syndromes making total volume of radiation minimization crucial, such as but not limited to NF-1 patients, deleterious ATM mutations, Li-Fraumeni, retinoblastoma patients, and patients with known or suspected genetic mutations. In addition, patients with other genetic mutations who are at increased risk of developing second cancers at or near the same body location such as but not limited to BRCA 1/2, Lynch syndrome, etc.

Medically inoperable patients with a diagnosis of cancer typically treated with surgery where dose escalation is required due to the inability to receive surgery

Re-irradiation cases (where cumulative critical structure dose would exceed tolerance dose)

Primary malignant or benign bone tumors

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Prospective Randomized Study in re-irradiation

Strahlenthenapie und Onkologie (2023) 199787–797 https://doi.org/10.1007/s0066-023-02118-1	Author and year of publication	Disease site	Study type, inclusion	Arms, design, endpoint, statistics	Patient number and character- istics	Median follow-up	Results and comments
REVIEW ARTICLE Prospective randomized clinical studies involving reirradiation: update of a systematic review Carsten Nieder ¹² · Jonas Willmann ³ · Nicolaus H. Andratschke ³	Li et al. 2006 [9]	Nasopharynx cancer	Single centre dose escala- tion, China, 1999–2002	54Gy followed by 16, 20 or 24Gy in 4-Gy fractions (3 fractions per week) 4 primary endpoints, power/assumed dif- ferences not reported	36, interval ≥6 months, N0 M0	27 mo	In each arm 2–3 patients had received in- duction chemotherapy 3-year recurrence-free survival was best in the 24-Gy boost group, $p=0.047$ Similar acute and late toxicity rates, but one fatal bleeding event in the 24-Gy boost group, which also had higher incidence of trismus, $p=0.08$
Received: 13 April 2023 / Accepted: 4 July 2023 / Published online: 27 July 2023 © The Author(s) 2023	Tian et al. 2014 [10]	Nasopharynx cancer	Single cen- tre phase 2, China, 2003–2007	IMRT 68 Gy in 34 fractions vs. 60 Gy in 27 fractions Overall survival, 80% power to detect 23% difference	117, KPS ≥ 70, interval >6 months	25 mo	Longer OS in the 60-Gy arm, $p = 0.06$ Similar PFS Less mucosal necrosis in the 60-Gy arm, p = 0.02
	Guan et al. 2016 [11]	Nasopharynx cancer	Single cen- tre phase 2, China, 2002–2008	IMRT 60 Gy in 27 fractions alone vs. same RT + concomitant weekly cisplatin Overall survival, 80% power to detect 30% difference	69, KPS ≥ 70, interval >6 months	35 mo	Longer OS in the combined modality arm, p=0.049 No significant increase in late toxicity, but more haematologic toxicity in the com- bined modality arm
	Liu et al. 2021 [19]	Nasopharynx cancer	Three cen- tres, phase 3, China, 2011–2017	Endoscopic nasopharyngectomy or IMRT 60-70Gy (2-2.36Gy per fraction, 5 frac- tions per week) Overall survival, 80% power and a two- sided 5% significance-level hazard ratio of 0.52	200, KPS ≥ 70, ≥ 12-month disease-free interval between the initial course of radio- therapy and recurrence, age 18–70 years	56 mo	Improved 3-year overall survival after surgery (86% versus 68% in the IMRT group, $p = 0.0015$)
	You et al. 2023 [20]	Nasopharynx cancer	Three cen- tres phase 3, China, 2015–2019	IMRT 60 Gy in 27 fractions vs. 65 Gy in 54 fractions (2 fractions per day) Overall survival and severe late complica- tions. 80% power to detect 20% difference (survival) and 24% difference (toxicity grade 3 or more)	144, KFS ≥ 70, inter- val > 12 months, age 18–65 years, no radiation- induced complications grade ≥ 3	45 mo	Reduced grade 3 or worse late radiation- induced toxicity in the hyperfractionation group (34% versus 57%, p=0.02) Better 3-year overall survival after hyper- fractionation (75% versus 55%, p=0.01) 49% of patients in the hyperfractionation group and 40% in the standard fractiona- tion group had locoregional relapse significant differences favouring hyper- fractionated radiotherapy in the general unality-of-life domains of elobal headth sta-

appetite

tus, role functioning, and social functioning, and in the symptom burden domains of pain, financial difficulties, and loss of

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Comparison?

Fig. 1. Difficulties raised by the institutions during the previous irradiation data collection (based on open-ended questions).

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschler", Jonas Willmann", Ane L Appelt, Najlaa Alyamani, Panagiatis Balermpas, Brigitta G Baumer, Corn Hurkmans, Morten Hayor, Johannes A Langernäji, Chit Kalar-Person, Yvette van der Linder, Ico Metatiki, Maximilian Niyazi, Nick Reynaert, Dirk De Ryusseher, Stephneir Tanadal-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder

AIRO2023

Comparison?

Contents lists available at science/firect
Physica Medica
ELSEVIER journal homepage: www.skien/ex.com/locatalsigmp

Management of reirradiations: A clinical and technical overview based on a French survey

Myriam Ayadi ",", Pauline Dupuis ", Thomas Baudier ^b, Laeticia Padovani ^c, David Sarrut ^b, Marie-Pierre Sunyach ^a

^a Radisation Therapy Department, Léon Bérard Centre, Lyan, France ^b Unit Joyn, INSA-Lyon, Università Lyon J., CONS, Isuerru, Cantter Léon Bérard, CREATIS UMR 5220, U1206, F-69573 Lyon, France ^c Radiocherapy Department, Assiance Publique del Stafpistar del Marsello, Marsello, France

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Re-irradiation: Technical, administrative and patient safety

- Issue: previous treatment records that we may receive for patients span a wide range of quality and informations
- Solution? The export of radiation treatment records from commercial planning systems should be standardized
- Issue: diversity of patient data transfer means...
- Solution? Develop a common and secured platform to allow interinstitutional data transfer

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Technical, administrative and patient safety

- Issue: DICOM RT planning data transfer inability, due to TPS obsolescence or decommissioning, or incompatible formats
- Solution? TPS vendors should guarantee compatibility of DICOM RT files provided by their software and inversely the ability of software to read DICOM RT files independently of their source

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Technical, administrative and patient safety

Issue: Biological and physical dose...

Prioritized wish-list for vendors	Average score
Calculation and visualisation of 3D dose distributions in EQD2 (and/or BED) with organ specific α/β and recovery factors in the TPS	12.7
Calculation of 3D dose distributions in EQD2 (and/or BED) in the TPS	10.11
Reliable deformable image registration	10.04
Visualisation of 3D dose distributions in EQD2 (and/or BED) in the TPS	9.63
Visualisation of uncertainty in dose mapping	9.63
Summed dose across treatment courses in EQD2	9.11
Tool to incorporate uncertainties from different parts of the process (image registration, EQD2 calculation, contouring, recovery factors, etc.) into the final dose reporting	8.78
DVH with 'error bars' to visualise uncertainty in dose mapping & summation	8.67
An all-in-one system!	8.52
Ability to do multiple (per-organ) rigid registrations (and dose summations)	8.26

Radiotherapy and Oncology 182 (2023) 109585

Commentary

Eliana Vasquez Osorio a.*, Charles Mayo b, Andrew Jackson c, Ane Appelt d

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Clinical and technical challenges of cancer reirradiation: Words of wisdom

Clinical challenges: ⇒ Patient selection ⇒ Risk/benefit balance ⇒ Multidisciplinary staff meeting

Technical challenges: \Rightarrow Radiation technique selection \Rightarrow Target volume definition \Rightarrow Maximal protection of healthy tissues

Beddok A. et al., 2022

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

TECHNICAL EVOLUTION

Modern techniques

- **Evaluation biological effect**
- Selection of patients
- Comparison in the best way
- AI for analyse data recorded and correlate to toxicity

"each patient is a special problem to be handled in a special way"

